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ABSTRACT

Geographicange sizeanspan orders of magnitude for plamtd animal speciewith the study
of why range sizes vatyaving preoccupied biogeographersdecadesin contrast, therbave
beenfew comparable studied howrange sizevaries acrosmicrohial taxaand what traits may
be associated with this variatiowe determined the range sszef 74,134 bacterial and archaeal
taxa found in settled dusbllectedirom 1,065 locations acrossetfunited StatedVe found that

mostmicroorganism$ave small ranges and few have large rargeattern similato the range
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size distributions commonly observed foacrobesHowevercontrary to expectationt)ose
microbialtaxa which were locally abundant did not resagily have larger range sizéfe
observed differences in microbial range sizes wereerally predictable from taxonomic
identity, phenotypidraits, genomic attributes, and habitat preferenfoedings ttat provide

insight intothefactors shapingatternsof microbialbiogeography.

Key Wordsi»Geographic range size, biogeography, dispersal, microbiology, microbial dispersal
dustassociated microbes

INTRODUCTION

Not all mierobes areverywherall the time Due to both dispersal constraints dwadbitat
filtering, we know that manynicrobialtaxa are restricted in their geograpaid ecological
distributions(Martiny et al. 2006; Hansomt al. 2012). Mcrobial endemism has been
demonstratederossa range ohabitatsncluding geothermal hot springs (Papéteal. 2003;
Whitakeretal=2003, benthic ecosysten{Ruff et al. 2015), soil (Cho andliedie 2000;Vos and
Velicer 2008; Andanet al. 2016), andnarine waters (Bouchet al. 2011; Ghiglioneet al.
2012;Sulet al. 2013).Perhaps the best evidence for restricted microbial distributmmes
from decadesfwork on pathogensviany pathogens dfiumars, domestic animalsgnd crops
are restricted.to certain geographic amasregions with specifienvironmental conditions
(Achtman2008; Bebbeet al. 2014;Justet al. 2014; Murrayet al. 2015).

Like plants and animalspany microorganismelearly have rangesthe geographiarea where

a given taxon is found and range sizes are likely to vary acrbasteridand archaddaxa The
study of range sizeand the factors that drive differences in range amkshapdjave been
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studied for more than a century by ecologists, biogeographers, and conservatiastbiolog
However, there is surprisingly little explicit documentatiommérobial geographicange size

taxonomic variation in range sizay, thetraitsthat might contribute to thivariation.

Much of thevariationin the geographicange sizeof plant and animadpeciess often
predictable. For example, occupancy-abundance relationships are generally,@ositive
organisms‘that'are locally abundant also often have large geographic ranges €Gas000;
Holt et al. 2002;"Roneet al. 2019, with causalitylikely flowing in both directionsCertain life
history strategiealsovary predictably withrange sizeFor examplespeciesvith greater
dispersal capabilitieend to have larger geographic ranges due to their ability to popelate
regions and‘tormaintain gene flow among regiasssthe case for certain insects (McCauéty
al. 2014), birds'(Laubet al. 2013), plants (Pautt al. 2009), and marine taxd@cpherson
2003; Lester an&uttenberd?005; Lesteet al. 2007). In addition, taxa able to live in many
habitat types, whether because they are generalists or have a high degree of phensitgjc pla
also tend tothave larger geographic ranges (Pohitrain2005; Pichancourt and van Klinken
2012;MoruetaHolmeet al. 2013; Ofstadtt al. 2016).Finally, closely related taxaftenhave
similar geegraphic range sizes due to shawogicalattributesas shown for species of birds
(Mouillot.andGaston2009; HerreraAlsinaandVillegas-Patraca2014).

With their'smallcell size, massive population numbers, and diverse physiologies, microbial taxa
have the peotential for widespread dispersal and colonization, and consequentigrigegsizes.
Evidence suggests there are unifying theories of biodiversity and biogkpgrapss all

domains @f life (Green and Bohannan 2006; Locey and Lennon 2016). Tehpsgalict that

many of the factors drivingange size in plants and animals also influence microbial range size.
For instance,. we would expect that locally abundant microbial taxa would tend t@igere |
geographic.ranges than rare species in concordance with previous work which has dedonstr
a positive_oecupancgbundance relationship for some microbial taxa living in specific
environments,(Nemerget al. 2011; Ruf et al. 2015). We wouldilso expect thatlosely related
taxashould have more similar range size distributidns to a greater likelihood sharing traits
that govern capacitfpr dispersal and colonizatioAs for macrobes, taxa that disperse well and
are able to tolerate a wide range of environmental conditions should have larger ranyjéesizes.
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predict that the relevant traits governing microbial dispersal may includedoy or other
strategies related taress (e.g. UV radiation, desiccation, extreme temperature) toleFarce.
example, endospore formatitacilitates the dispersal of microbégsough both time and hostile
conditions.This traitallows Bacillus species to travelcrosscontinents in thepper atmosphere
(Robers and€ohan 1995) and thermophilic mariRemicutes to persist in cold sediments
(Muller et al. 2014).Similarly, wepredict that traitessociated with the ability twlonize and
grow in‘diverse‘environments may include genoohiaracteristicselated tgphenotypic
plasticity andhabitat breadth. From previous work showing that genome size correlates with the
ability of soil bacteria to persist in a broad range of habitats (Barbeahr2014a; Cobd&iman
andTamameg2017) wewould expecgenome sizéo positively correlate with range size
Hence, thessuitef phenotypic traits and genomic attributikeatinfluence the ecological

distribution of microbial taxalsolikely influence range size.

To build a'more comprehensive understanding of how and why microbial range sizesynay var
we determinedithe range sizand shapgof 74,134 bacterial and archaeal taxa found in settled
dust collectedsfrom outdoor building surfaces from 1 8émesacrosghe United States. We

focus on'settled dust becauses found everywhere and easy to sample consistdridgwise,

we know.that those microbes found in settled dust were at one point airborne, allowing us to
identify organisms that can be dispersleugh the atmosphere. Also, the settled dust found on
outdoor building surfacds nutrientdimited and is unlikely to represent toeiginal
environmentaksource of the taxa found therein. In other words, by examining the range sizes of
those microbesolund in settled dust, we can more read#gess differencesross taxan their
dispersal capabilitieas opposed tdifferences related to colonization and establishment in a

more suitable environment for growth.

We calculated.range size using bothdhea of occupancy (AOO) and the extent of occurrence
(EOOQO) appreximations, both of which are commonly used in macroecology (Gastbuller
2009).Simplified, AOO isakin to a ‘dot map’ of observatiomsross a gridverlaythat are
summed togethewhile EOO iscomparabldo ‘connecting the dots’ and calculatingetarea of
the resulting shape. Wieterminedf the distrbution of range sizes for thesecrobial taxas
similar to plantand animal specieand to what extent the occupancy-abundance relationship
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108 explains variation in range sizéurthermore, we determined if taxonomy could predict

109 differences in range size distributions. Finally, we mined the extensivehve¢atiformation

110 available incuraedmicrobialdatabase® determine ifphenotypidraits, genomic attributes, or
111  habitat preferencesan explain the measured variability in range Silgs studyrepresents one
112 of the first comprehensive efforts to understand the variation in range size across a broad range
113 of microbial taxa, whether microbes follow the same biogeographical patternsocdyn

114  observed formacrobes and why some microbial taxa halarger range sizes than others.
115

116 METHODS

117  Sample collection and molecular analysis

118 Details of sample collection and molecular analizsige been described previou@Barberaret
119 al. 2015). Briefly, outdoor dust samplegrecollected from the upper trim on the outside

120 surface of an exterior door Iparticipants of the Wild Life of Our Homes

121 (http://robdunnlab.com/projects/wide-of-our-homes/citizenscience projecBacterial and

122  archaeadiversity was determinealy sequencing the V4 hypervariable region of the 16S rRNA
123 genewith primers 5159 (GTGCCAGCMGCCGCGGTAA) and 86R (GGA-

124 CTACHVGGGTWTCTAAT) (Fiereret al. 2012) using the direct PCR approach previously
125 described«(Floreat al. 2012).Seqiencing was done on the Illumina HiSegwiBeq platforns
126  with all reads trimmed t@00 bp.All readswere quality filtered (maximum-ealue of 0.5),

127  dereplicated, and clustered into phylotypes at a Sirfdarity threshold with the UPARSE
128 pipeline (Edgar,2013). Taxonomic identityas determined using the Ribosomal Database
129  Project classifier (Wangt al. 2007) trained on the Greengenes 1368 rRNA database

130 (McDonaldet al. 2012).All sequence datareaccessible through the Blgarerepository (

131  https://doi.org/10.6084/m9.figshare.1270900.v8)

132

133  Eukaryotic.sequences were remoyvadd those phylotypes present in >25%egativecontrol

134 samples (ineluding phylotypes classified\vgcoplasma, Pseudomonas, Serratia, and

135  Acinetobacter),were also filteregbrior to downstream analyses as they likely represent taxa

136  originating from reagent or amplification contamination (Sadtet. 2014). To minimize

137 amplicon sequencing biases between samples, low coverage saraptasnples with10,000

138 reads after quality filteringwere removed, and total sequence counts were normalized using a
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139 cumulativesum scalingapproach (Paulscat al. 2013).We restricted our analysésthe

140  contiguous United Stateand hence removed samples originating from Hawaii and Alaska.
141  Finally, we excluded rare phylotypes (i.e. phylotypes prasdeiver than fivesamplesas at

142  least five gbseryatiorsre requiredo calculate range size using the minimconvex polygon
143  approach described belovif. total, 74,134 phylotypes across 1,06&mplesvere included irall
144  downstream analyses.

145

146  Range size'and'shape calculations

147 Latitude and longitudeoordinates were inferred from sample locations gportedaddresses),
148  and theseeoordinates were transformed into the Lambert conformal conicipngje€C) for
149  all spatial analyseddany plant species are dispersed by wind (Hane Smallwood 1992;

150 Clarket al. 2002), so given the potentsimilaritiesbetween plants ardlistassociated

151  microbesn theirdispersal dynamicsye usedapproaches to calculate range sizes commonly
152  enployed by plant biogeographeRange sizevas determined using both area of occupancy
153  (AOO) (seekKolb et al. 2006;Kreft et al. 2006 Esslet al. 2009)and extent of occurrence (EOO)
154  (seeSérgioet al¢2007; Brummitet al. 2015).To determineAOO, we overlaid a 100 x 100 Km
155 grid that encompassed all sample locations and used the R package sp (RaloeBmand

156  2005) to.count the total number of grid cells in which each phylotype was observed. AOO range
157  size (knf) was calculated by summing the area of totalupied grid cellsTo determineEQO,
158 we used the R package adehabitatHRd@g¢ 2006) to find the minimum convex polygon

159  (MCP) afterexcluding 5% of the extreme poifE€O0 range size (kfhwas calculateftom the
160 area of thaMEP circumscribingall observations for each phylotygeang shape was

161 determined by calculating the maximum longitudinal and latitudinal dimensions ofemcer
162  for each phylotype. To control for biasegroducedby uneven sampling intensity, we divided
163 the U.S. into.six regions, sigampled 70 locations from each of these regions, and repeated the
164  range dimension analyses.

165

166  Taxonomic Signal and phenotypic, genomic, and habitat trait-based analyses

167 Next, we assessed potential taxonodaterminants of range size. Phylotype range size was
168 ranked by Phylum, and phyla witbwer thar25 representative phylotypes were excluded. For
169 the most abundant phyla (iferoteobacteria, Actinobacteria, Firmicutes, andBacteroidetes),
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170  phylotype range size was also ranked by Family families with fewer than 25 representative
171  phylotypeswere excluded

172

173  Finally, we determinedf differences in phenotypitaits, genomic attributes, or habitat

174  preferencesouldfurtherexplain variation in range sizé/e inferred putativéraits of dust

175 phylotypesby matchingheir 16S rRNAgenesequenceto thoseof reference strains from

176  curated; publily“available databaseRepresentativpartial 16S rRNAgenesequences from

177  each phylotypavere matched againftll length 1L6SrRNA gene sequences from the IJSEM
178 phenotypic databagBarberaret al. 2017 and from the Integrated Microbial Genomes (IMG)
179 database (Markowitet al. 2014).Matches were determined usiBgASTn (Altschul et al.

180  1990)at>99% identity and >95% coverageWe restricted thesanalyseso the top four most
181 abundant phyla; which includéttoteobacteria, Actinobacteria, Firmicutes, andBacteroidetes.
182  We recognize that partial 16S rRNA gene sequences may not provide a level dioresolu
183  sufficient fer accurately identifying the phenotypic and genomic traits tdal However, the
184  selected traitsttypically show a strong phylogenetic signal and are generaéyveahacross
185 broader taxa ‘and lineag@arberaret al. 2017).

186

187 We were.able to match a totalh#6116S rRNAgene sequences dust phylotypes (including
188 518Proteobacteria, 428Actinobacteria, 293Firmicutes, and 22Bacteroidetes) to 2,487 unique
189  full length16S rRNA gene sequences in the IJSEM phenotypic dai@zaberaret al. 2017).
190 We assessgetbw theAOO variedin relation to theollowing phenotypidraits: oxygen

191 tolerance sperulation, pigmentatioisram stairreaction andsource habitaHere, source

192  habitat refers to the reported isolation source of a gstamn from the IJSEM phenotypic

193 database (Barber@nal. 2017). \\& selected these traits because we expected that these traits
194  may influence dispersal ammblonization capabilitied=or discrete traitsve excluded phylotypes
195  with matches tanultiple strainghat hadconflicting trait values

196

197 We matched a. total of 1,186 16S rRNA gene sequences of dust phylotypes (including 415
198  Proteobacteria, 276Actinobacteria, 325Firmicutes, and 17@acteroidetes) to 6,321 unique full
199 length 16S rRNA gene sequences in the IMG database (Markealt22014). We assessed
200 howAOO variedwith the following genomic attribute§&+C contentgerome sizeand 16S
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201  rRNA operon copy numbeWe hypothesized thalhese attributes may influence phenotypic
202  plasticity and habitat preferences. G+C content and genome size are highly correlated in bacteria
203 and large genomes are thoughttmferbroad nichdreadth(Bently and Parkhill 2004).

204  Multiple copies of the 16S rRNA operon are common in microbial genomes and are reflective of
205 copiotrophc.er.oligotrophic life historystrategies (Klappenbaahal. 2000), with those taxa
206  capable ofshigher maximum growth rates generally having a larger numis&¥afoperons

207 Forthesegenomic attributesve determined mean values fonylotypeswith matches to

208  multiple strains

209

210 RESULTS

211  Microbial diversity and community composition

212 Atotal of 74,134 16S rRNA gersequenc@hylotypes were observed across the 1,065 dust
213  sampleqFig. 1a), with each sample harboring 4,850 phylotypes on avekageal of 50

214  bacterial and af@ealphyla were recovered, and the dominant plmdee Proteobacteria,

215  ActinobacteriapFirmicutes, andBacteroidetes with >75% of phylotypes assigned to these four
216  phyla (Appendix S1: Fig S1Pnaveragea given phylotype was observed in 70 andi2férent
217 samplefmeanandmedian, respectivelyNearly 244 of phylotypes were found 110 samples
218 and only.3phylotypes were observed380% of the sample${g. 1b). Community

219 compositiorwas highly variablecross the samplesith geographic distance as well as

220 environmental factors including soil pH, precipitation, primary productivity, amgéeature

221  being the bestypredictors of overall differences in community composition (see Baattsdran
222 2015for detailg.

223

224  Range size.and shape

225  Thefrequency.distributiomn range size as measured using the area of occupafg) (vas

226  highly rightskewed andbest described using a legrmal distribution; many taxa have small
227  ranges and{few have very large ranf@g. 1c). Across all phylotypes, the mean and median
228  estimated®®@O.rangesizes were 3,984 and 2,200 kinrespectively. Alternativelyusing the

229 extent of occurrence (EOO), we found that the frequency distribution of EOO raege lsest
230 described as irregular and bimodaig. 1d). Across all phylotypes, the estimated mean and
231 median EOO rangsizes were4.2 and 4.3 million ki respectivelywhich is approximately half
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of the area ofhe contiguous U.S. We observadtrong positiveorrelation(Spearmaisp =

0.89, P < 0.0001) between 18O and EOO estimations of range s{a@pendix S1: Fig S2
Given the high potential farell dispersal and theide distribution ofsuitable habitatsye

expect that EOQ is likely overestimating microbial range sizes Tibegefore, we used the more
conservative-AOO estimation for downstream analyses focused on determining whelpote

factors might explaimange size variation.

We describerangeshapeby calculating the maximum geographic spread in both longitudinal
and latitudinadimensions. The frequency distribution of the longitudinal rasigeghly left
skewed mostsphylotypesverefound on both theasern and vesterncoastsandhave a mean

and mediareastwest span 08,869 km and 4,183 kmespectivelyAppendix S1: Fig S3a).
While also leftskewed, there wasgaeatewvaration in the latitudinal rangeith a mearand
mediannorth-south span of 1,855 km and 1,92Q kespectively(Appendix S1: Fig S3b)While
phylotypes . with greatdongitudinalspreadalso tend to have greatatitudinalspread
(Spearman’e='0.67, P < 0.0001), range dimensions for most phylotypes (89.9%) are elongated
eastwestasopposed tmorth-south(Fig. 2) and thigpattern persistafter normalization for the
irregularshape of the sampling region (i.e.th8.is largereastwestthan northsouth and after
correctingsfor differences in sampling intensities across different re(dqgpendix S1: Fig S4
The bacterial and archaeal phylotypes are far more likely to have largaresastistributions

than north-south distributions.

One of the'mest widely observedrrelates of range size is local dénsr abundance, and
specieghatare more abundant tendhave largegeographic rangdblan rare specig§aston
1996a Holt et al,. 2002) Interesingly, we findlittle support for this relationshijpr dust-
associated. microbebistead, & found only a weak correlation between liheal relaive
abundance of a phylotype andrigmgesize Spearman’g = 0.14, P < 0.0001(Appendix S1:
Fig ).

Taxonomic differencesin range size

Giventhis broad distribution of range sizasrossdust phylotypes, we next sought to detme
what additional factors could furthexplain this variationTo begin, we asked range size
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263  differed across taxonomic groups. We found that geographic range size has a strong taxonomic
264  signal and varies significantlceossphyla (oneway ANOVA; Fag, 70207= 136.2, P < 0.0001)

265  (Fig. 3). For example, phylotypes within the phyléetinobacteria tend to have range sizes that
266  are approximately 13% larger than the range sizes of phylotypes within the phylum

267  Acidobacteria(Tukey’s test; P = 0.00022). Withthe Archaea, range sizes@fenarchaeota are
268  approximately.69% larger than thosebofyarachaeota (Tukey's test; P < 0.0001).

269

270 At greatertaxonomic resolution, the taxonosignal for raage sizewithin the top four most

271  abundant/phylavas evenmorepronounced (Appendix S1: Fig S6).evdbservd significant

272  differences:acress families Bf oteobacteria (oneway ANOVA,; Fss, 15833= 84.9, P < 0.0001)
273  (Appendix'S1:#Fig S6apctinobacteria (oneway ANOVA; F4o, s005= 21.8) (Appendix S1: Fig
274  S6b),Firmicutes(oneway ANOVA,; F,1, 7150= 66.6, P < 0.0001) (Appendix S1: Fig S6c) and
275  Bacteroidetes (oneway ANOVA,; Fis,5350= 70.1, P < 0.0001) (Appendix S1: Fig Sae)r

276  examplewithin the Proteobacteria, Burkholderiaceae sharea similar range sizavith

277  Rhizobiaceae(Tukey's testP = 0.98) an®radyrhizobiaceae (Tukey’s test; P = 0.052), and all
278 threeof thesefamilies have larger range sizes tiNgisseriaceae or Legionellaceae (Tukey’s

279  test; P <0:0001) (Appendix S1: Fig S6a).

280

281  Phenotypic and genomic traits that vary with range size

282  Finally, weasked ifcertain phenotypic or genomic traits could predict variation in range size.
283  We found thatainge size varies withxggen tolerancetfo-way ANOVA,; F3 2324= 67.5 P <

284  0.0001); aerebes have geographic ranges approximately 63% larger than anaerobes (Tukey’s
285 test; P < 0.0001)Hig. 4a).However,the strength of the relationship between oxygéerance
286 and rangesizediffers betweerphyla fwo-way ANOVA; Fg 224 = 2.6,P = 0.0062 (Appendix

287  S1: Fig Fa).Unexpectedly,ange sizes weragpproximately 199%mallerfor those phylotypes
288 inferred to.be capable spore formation, ean after restricting the analgdio obligate aerobes to
289  minimize potential biasescurred by manynaerobes being spef@mers(two-way ANOVA,;

290 Fy 168 = 36:0,P < 0.0001F{g. 4b), although the strength thiis relationshipdiffered between
291 phyla capable of spore formatiamvp-way ANOVA; F1 165 = 5.0, P = 0.026(Appendix S1:

292  Fig S7b). Taxa that are pigmented tendedchaverangeghat areapproximately\39% largeithan
293 taxa that are not pigmentevp-way ANOVA,; F1, 1802= 55.4, P < 0.0001Hg. 4c), and this
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patternwas independent gshylum identity fwo-way ANOVA; F3 1g02= 1.5, P = 0.2p
(Appendix S1: Fig S@). Range sizalsovaried with Gramstain taxa with Gram staipositive
cell wallshave approximatel§7%larger ranges than taxa with Gratainnegaive cell walls
(two-way ANOVA,; F; 31207= 32.4, P < 0.0001Fg. 4d). Finally,range size vargkwith source
habitat (wo-way ANOVA; F7 g907=11.1, P < 0.0001taxa derived from soil and plantere
more likely.to have largganges comparet taxaassociated witlaquatc environments such as

seawater ormarine sedimefifaikey’s test; P < 0.005)(g. 4e).

With regards to'genomic attributes, we found thatesizewas positively correlatd with G+C
content (Pearsen’s r = 0.45, P < 0.00(Aiy(5a), but this relationshipvas largely driven by
Proteobacteria(Pearson’s r .39, P < 0.0001) an&kctinobacteria (Pearson’'s r =0.32, P <
0.0001) (Appendix S1: Fig S8a)aRge sizend genome siagerealsopositivelycorrelated
(Pearson’s = 0.22, P < 0.0001Fg. 5b), and this relationshipassignificant whenwe ran the
analyses for each phylum individually (Appendix S1: Fig S8b). Finally, rangevaiz
negativelyscorrelated with6S rRNA operon copy numb@Pearson’s r =0.28, P < 0.0001

(Fig. 5¢), butthe directionand significancef this relationshipvaried when these analyses were

conductedwwithin individual phyla (Appendix S1: Figch8

DISCUSSION

Geographic range size icarnerstone of biogeography, and studies of how range &g

across tax&ave contributed to the development of kayadigms irconservation biology,
evolutionarysbioclogy, and ecologespite decades sfudies investigating range size and range
size determinants in plants and animals, comparable studies are rarely conducted with microbial
taxa.We addressethis knowledge gap by investigatinigerange size and thepotential factors
associated with,range size variatamross droadbreadthof bacterial and archaeal taxa

(Appendix. S1. Fig Slidentified indust samples collectdcbm across the United Statésig.

1a).

The accurate evaluation of microbial range size distributgobkallengingandmanyof these

challengeslsoapply to the accurate estimationpdént or animal range sizdsirst, most
microbialcommunities are highly divers&€hus, adequate sampling depth is important,itand
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remainschallenging taleterminewith confidence whether a given taxisriruly absent in a
community or simply below the level of detection. High-throughqultureindependent
sequencing approaches, like the approaedunere in which we identified microbial taxa in
samples hy analyzing a mean5®,83116S rRNA gene sequences per samgehelp to

reduce the magnitude of this problem (Sagial. 2006; Lynch andNeufeld2015). Even soye

are undoubtedly underestimating the full extent of microbial diversity in indivihmaples.
Importantly;fis'problem dinsufficientsampling depth, which limitsur ability to confirm

which taxaare*truly abseti in a given sample versus thoseaadkiat were simply not detected,
also plagues plant and animal survéylacKenziegt al. 2002; Cunningham and Lindenmayer
2005). Seconeaccurate estimations of ramgize ardest achievethrough extensive population
surveysacrossta broadgreographic region of interest. While sampleftprts are inevitably
constrained byogistics more is always betteand we were able to collect samples fro065
locations across theontiguoudJ.S. (Fig. 1a). Third, range sizes will undoubtedly vary as a
function ofitaxonomic resolution therangesizes of suipopulations will likely be smaller than
range sizeswofithieroaderspeciesor genus. Most studies of plant and animal range size focus on
species omtrasspecies levelesolutiors. While the species definitions for plants and animals are
often arbitrary and somewhat inconsistent, microbiologists continue to intensatg tied
‘microbialsspecies concept’ and even the mere existenspeaiegRoselléMoraandAmann
2001;Geverst al. 2005; Achtman and Wager 2008; Doolittle 20113).remedy this, microbial
ecologists often define units of diversity, or phylotypes, based on similarity in marker gene
sequencesSuch an approach was used here as we defined phylotypes as those taxa which shared
>97% simlarity‘in their16S rRNA gene sequences, a threshold that roughly correspaads to
bacteral ‘ species(StaclebrandtandGoebel 1994; Kinet al. 2014). In shortthe challenges
associated witlestimatingmicrobial range sizes armt unique tamicrobialecology, andve

argue that.robust investigation of microbial range size is possiblehgitampling effort and

methodologiesusedukre

The AOO range size frequendistribution for dust phylotypesas highly rightskewed Fig.
1c¢); many microbial taxa have small geographic ranges and fewer have large ones. This
distribution of geographic range sizeescribed aa‘hollow curve’ that is approximately leg
normally distributed, is widely observed for mangm and animal species (Gastt®#O6h
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Berryand Riina 2005; Ormet al. 2006; Agostat al. 2013. In addition to rangsize, the shape
of a specig’ range is also commonly studied by plant and animal biogeograjireven et al.
1996). For instance, range shaja@é be used talentify the environmental variables that
determingoatterns of range expansion (Pigbal. 2010).Here, we described theangeshaps of
thesemicrobial taxa by measuring tineaximum eastvest and nortfsouth spreadf each
phylotype.\We found that theorth-south spread of taxa was ma@nstrained that the easest
spread Fig:-"2,Appendix S1: Fig S3). To put simply, many taxa are found on both eastern and
western coasts, but fewer are distributed across the southern and northernié®ohtzeU.S.
This results in an eastest elongated range for a majority of dust phylotypé&s €, Appendix

S1: Fig 3)gapattern that is consistent with #sastwest range elongatidhat isobservedor
many North“American plat and animal species (Brovehal. 1996; Rosenfield 2002; Schlachter
2010).This patterrmay be a product of dispersal driventbg prevailing winds which
predominately blovacross North Americiom the west to the eagthe migration of microbes
through the atmosphere has been previously linked to wind patterns and weather dynamics
(Yamaguckiet-al. 2012;Smithet al. 2013; Barberasmt al. 2014 Weil et al. 2017). This pattern
alsosuggestshat there aréatitudinallimits to dispersal, which could be the result afnatic
temperature_constraintgs historical biogeographical processkt{elbachet al. 2007).
Latitudinal-constraints to dispersal avell documented across diverse plant and animal species
(Wienset al. 2006; Svenning and Skov 2007; Salisbeirgl. 2012),and more recentlguch
constraints have beelvcumentedn terrestrial soil bacteriGAndamet al. 2016; Choudoiket al.
2016). Westhink that future work integrating informationveeather systems amdherclimate

variables toraddress mechanisms of microbial migration will be particularly insightful.

The frequency distribution in geographic range sizes and the spatial dimensions shagreye

for these dusassociated microbes are qualitatively simitawhat is commonly observed for
plants and.animal$n contrast, we find little support for the occupancy-abundance relationship
for dustasseciated bacter{&ppendix S1: Fig S5)This finding goes against expectationshas t
occupancy-abundancelatiorshiphas been widely observed for plaatsd animals (Gastaat

al. 2000). Although this relationship may somewhat be inflatethéyhallenges associated with
sampling rare tax@NengerandFreemar2008; Sileshet al. 2009), most bacterial phylotypes,
regardless of their local abundance, had small ranges, while phylotypes withdagh |
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abundance were nearly as likely to have large ranges as raf@pgendix S1: Fig S5). Thus,
abundance alone is not a useful predictor of microbial range aimistead we expected that
much of the observed variation in microbial range size is likely deedlutionary orecological

traits affecting dispersal or habitat preferences.

Range size distributions varied across taxonomy, seahmange size differesignificantly
betweerphyla‘(Fig. 3). Importantly, his relationshipvasnotjustdriven by the most abundant
phyla. For'exampleange sizefor the Crenarchaeota and candidate phylum FBP are amongst
the largest in the dataset, yet these phyla are nkedaamong the top ten most abundant phyla
(Appendix.Sl=Fig $). We also see intrgroup differences range size distributions between
phyla. For'example, range size approximation$fateobacteria andBacteroidetes encompass
values spanning the minimum and maximum of the entire dataset, while range size
approximations for candidate phyla WPS-ZCbtorobi have a much narrower size distribution
(Fig. 3). Some of this variation in range size Ryoteobacteria or Bacteroidetes is further
explained byclear differences in range size at tlaily level oftaxonomic resolution
(Appendix'S1=Fig S6).

We iderified a number of phenotyptcaits, genomic attributes, and habitat preferences that
varied predictably as a function of geographic range Bize4, Fig. 5). Some of these traits are
consistent.across phyahile other traits explain more variation in range size within certain
phyla (Appendix S1: Fig S7, Appendix S1: Fig S8). For instance, we found that anaerobes were
more likelysteshave smadl range sizeshan aerobed~(g. 4a), potentially due to their inability to
survive dispersal through the oxygeoh atmosphereContrary to expectations, we found non-
spore forming aerobes had larger range sizes than-gpares (Fig. 4b). This patterrwas
consistent foActinobacteria andFirmicutes, which are phyla with both spore-forming and non-
spore forming.membel#ppendix S1: Fig S7bEither there are other traits that are more
important than spore formation in determining dispersal capahilii@ge are limited in our
ability to aceurately predidporeformationfrom theavailablein vitro data. Finally we found
thatpigmentationwas associated with larger geographic ranges 4c), potentiallydue to
pigment production offeringV protection to microbial cells durirggmospheric dispersal
Pigments have been shown to protéetillus endospores from radiation (Moellgral. 2005),
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and carotenoigigments are also shown pootectproteobacteriephytopathogens from UVTO
et al. 1994; Mohammadst al. 2013).

Additionally, we found that bothenomeG+C content and genome sinereasd with range
size(Fig. ba-b;,AppendiS1: Fig Ba-b), although these genonaittributes aralsopositively
correlatedwmth each other (Nishida012).Greater G+C content has besssociated with
genomeé'stability and thermal tolerance in sonierobes(Nishio et al. 2003; ManrandChen
2010). Larger'genomes correspond to more genes and metabolic patmavdikely confer
greaterphysiological versatility andbility to survive diverseenvironmental condition@ently

and Parkhill 2004; Konstantinidet al. 2006). Our findings are in lingith recent studies
showing that larger genomes are linked to ubiquity and great@onmental and spatial
distributions(Barberanet al. 2014a CobeSiménandTamameg017). Conversely, we observed
a negative correlation between 16S rRNA gene copy number and range sise)(FHgggesting
that oligotrophic life history strategies (see Klappenkaieh. 2000)are associated withreater
range sizevithin some phyla. Finally, we found that the inferred habitat preferences of
microbes could explain some of the variation in range size. Soil and plant asstaoiataad
larger range size distributions than marine and aquatic habitat associatddgasa) (Not
surprisingly; these results suggest that those taxahdikely found in widespread source
environmerg tend to havédarge ranges. While we cannot explicitly determine the source origin
for each taxon, phyla that are dominant in soil, includiaignobacteria andAcidobacteria, have
some of the"largest range size distributidfig.(3, Fig. 4e). Conversely, taxa froseawater and
otheraquatieshabitats tend to have smaller rar{§@s 4€) a pattern that mayesult fromthese
source habitats not being as widespread across the sampled region, limited aerosolization of
microbial cells from thessource environments, areducedapacity for thesaquatic taxao

survive desiccation

Together arresults illustrate wide variation in range size of diverse bacterial and archaeal taxa
found in settled outdoor dust. The shape of the range size frequency distribttiese

microbes is similar to many plants and animals, suggesting similar processes can drive observed
biogeographical patterns. However, the canonical occupamnayeance relationship explains

little of the variation observed helastead, we found ranggzeto vary between major phyla

This article is protected by copyright. All rights reserved



449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477

and identified phenotypic traits and genomic attributes that also vary actossrtgy. These

traits likely influence dispersal capabilities the ability to colonize and establish in an
environment following a dispersal event. Many dast¢ociated taxa are of ecological,

agricultural, and medical importance, and integrating range size calcukaidmange size
determinantgato microbial ecologwill advance our understanding of the spatial distributions

of taxa of InterestI ogether, this work highlights the importance of both dispersal dynamics and

habitat distribution in generatirgatternan microbial biogeography.
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FIGURE LEGENDS

Figure 1.

Map of the*contiguous United States with the locations of the 1,065 outdoor dust samples shown
with blue“peintg1a). Geographic range size was calculated for dust taxa using pwaaeabes,

the area.of*occupancy (AOO) and the extent of occurrence Y B@foximations (see
Methods).Kernel censity distributions for occupancy (itetal observations across sample 3ites
(1b), area of occupancy (AOO) range estimations (1c), and extent of occurrenceréiao)

estimations*(1djor dust phylotypes

Figure 2.

Points show the maximum longitudinal and corresponding dtiali range for each phylotype.
Phylotypes.with greater easest spread also tend to have greater rswtlth spread
(Spearman’'$.=0.67, P < 0.0001pince the United States has greater-e@&st than north
south dimensionghe blue dashelthe normalizes for thiglifferenceand depits the ratio of
possiblemaximum spread?oints above this line (10.1%\dicateranges elongated nortouth,
and points below this line (89.9%dicateranges elongated easest (see insptSeeAppendix

S1: Fig S for the density distributions of Igitudinal and latitudinal ranges.
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748  Figure3.
749  Boxplots illustratingange size distributits for dust taxa ranked by Phylubag;o AOO range
750 sizeestimatios vary significantly between phyla (om&y ANOVA; Fg 70207= 136.2, P <

751  0.0001).
752
753  Figure4.

754  Phenotypictraits ansburcehabitats of dudbacteriawere inferred by matching representative
755 partial 16S fRNA phylotype sequences to full lendi® IRNA sequences in the IJSEM

756  phenotype dtabase (sedethods). Boxplots illustrate the relationshigtweerthe AOO range
757  size estimatiomand oxygen tolerar{da), spore formatiom obligate aerobe@b), pigmentation
758  (4c), Gramstain (4d), and habitéde) for the most abundant phyla includifigpteobacteria,

759  Actinobacteria, Firmicutes, andBacteroidetes. Range size varies significantly with oxygen
760  tolerance(ANOVA,; F3 2324= 67.5, P < 0.0001(4a), spore formatiorANOVA; F1 1643= 5.0, P
761  =0.025 (4b), pigmentationANOVA; F1 1s0.= 55.4, P < 0.0001(5c), Gram stainANOVA;

762  F2 31207= 32dyP < 0.0001(4d), and habitatANOVA; F7 g07= 11.1, P < 0.0001SeeAppendix
763  S1: Fig § forphenotypic traits by phyla.

764

765  Figurebs.

766  Genomicattributesof dust taxa were inferred by matching representative partial 16S rRNA
767  sequences.to full length 16S rRNA seguoes irtheIMG database (sddethods).Panels depict
768 the relationship between AOO range size estimaimmean G+C content (5a), genome size
769  (5b), andoged6S rRNA copy number ¢} for the most abundant phyla including

770  Proteobacteria, Actinobacteria, Firmicutes, andBacteroidetes. Pointsdepict the AOQange size
771  estimatios and the mean values of genomic traits. Blue lines show the linear regression with
772  gray shading.indicating 95% confidence intervals. Pearson’s pratuoent correlationis

773  reported SeeAppendix S1: Fig S8r genomic traits by phyla.

774

Figurel.
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Figure 2.
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